Catalyst-Substrate Effects on Biocompatible SABRE Hyperpolarization
نویسندگان
چکیده
منابع مشابه
SABRE-Relay: A Versatile Route to Hyperpolarization
Signal Amplification by Reversible Exchange (SABRE) is used to switch on the latent singlet spin order of para-hydrogen (p-H2) so that it can hyperpolarize a substrate (sub = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine). The substrate then reacts reversibly with [Pt(OTf)2(bis-diphenylphosphinopropane)] by displacing OTf- to form [Pt(OTf)(sub)(bis-diphenylphosphinopropane)]OTf. Th...
متن کاملAchieving High Levels of NMR‐Hyperpolarization in Aqueous Media With Minimal Catalyst Contamination Using SABRE
Signal amplification by reversible exchange (SABRE) is shown to allow access to strongly enhanced 1 H NMR signals in a range of substrates in aqueous media. To achieve this outcome, phase-transfer catalysis is exploited, which leads to less than 1.5×10-6 mol dm-3 of the iridium catalyst in the aqueous phase. These observations reflect a compelling route to produce a saline-based hyperpolarized...
متن کاملN Hyperpolarization by Reversible Exchange Using SABRE-SHEATH
NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% ...
متن کامل15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH
NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% ...
متن کاملAchieving Biocompatible SABRE: An in vitro Cytotoxicity Study
Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ChemPhysChem
سال: 2018
ISSN: 1439-4235
DOI: 10.1002/cphc.201800915